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Figure 1: Diagram showing a point mass M, with a companion of mass M; with an exag-
gerated tidal bulge. The axis of the bulge is shown by a dotted line, which, in the case of
co-rotation, would pass through M.

Consider a circular but unsynchronised orbit of a binary with component masses M; and
M, and separation a. We denote the moment of inertia of M; by I, assumed to be constant,
the spin angular momentum of M; by Ji, and the spin angular velocity of M; by ;. We
consider the simplifying case of the spin of M, being small, such that its moment of inertia
may be neglected (1121 > 15)s).

Ignoring winds, the total angular momentum of the binary orbit is therefore

J = [191 + ,ua2Qorba (1)

where 1/ = 1/M; + 1/M; and p is the reduced mass.

We consider the scenario shown in Figure 1, where £2; < 1, such that the bulge of M,
lags behind M,. Tidal torques act to transfer angular momentum from the orbit into the
spin of M; by tightening the orbit. This increases €2; to match €2,. But with a tighter
orbit, 2,1 also increases. A natural question that arises is whether the binary ever reaches
synchronisation:

o If Ql > Qorb, the spin-up of M; is faster than the spin-up of the shrinking orbit. The
system approaches synchronisation, g4, — 7 — 0T,

o If O < Qum, the shrinking orbit causes the orbit to spin up too quickly for M; to
catch up, and €21, — €2; increases catastrophically. This implies the separation shrinks
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catastrophically (on a dynamical time), ending with a merger. This is called the Darwin
instability.

Claim 1. With this setup, we have Jl% = %Jorb%“;-

Proof. By conservation of total angular momentum J,

0=J= LY +2paaQum + 10> Qo - (2)
~ —
- sor 2

In the second term, rewrite ¢ in terms of Qo by noting that Qorty /Qob = —(3/2)(a/a). We
then obtain the required expression by collecting like terms. O]

A Corollary of the Claim is that requiring € > Q1 for stability gives the stability
criterion on the angular momenta:

‘The system is Darwin stable <= Jo, > 3J, (3)

i.e. A synchronised orbit is achieved as long as M; has sufficiently small spin (less than a
third of the orbit). The stability criterion may also be recast as a condition on the separation:

31
The system is Darwin stable <= a > aparwin = iy (4)
i

Application to Binary Orbits

A binary that starts off satisfying Equation 4 may eventually shrink below apa,win due the
evolution of M. Because I} ~ M;R?, the radial expansion of M; during its evolution may
cause Uparwin 10 grow and supersede a, leading to the Darwin instability. However, if M;
fills its Roche lobe before this occurs, then the Darwin instability never becomes relevant.
Therefore, a binary never becomes Darwin unstable if its separation exceeds the maximally-
realisable aparwin, Which is aparwin evaluated at the moment M, fills its Roche lobe, 2 (q)a:
a > aparwin(R1 = z(q)a), where ¢ = M; /M is the mass ratio. Defining I = kM R?, this
becomes
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31+ ¢ 1(q) (5)
The separation a? cancels out, so we find a criterion that is independent of a and only

depends on ¢ and k. We may use the Eggleton (1983a) analytical approximation of the
Roche radius,

B 0.49¢%/3
©0.6¢2/3 + In(1 + ¢/3)

z(q) (6)

Solving Equation 5 numerically, we find the following critical mass ratios:



e For a n = 3 polytrope, which is a reasonable description of a main sequence star,
it may be shown that k& = 0.076 (approximately a fifth that for a uniform sphere),
upon which one finds the critical “Darwin” mass ratio qp ~ 12, above which the
binary encounters the Darwin instability and plunges in on a dynamical time. Tides
do not have enough time to synchronise and circularise the orbit, meaning the binary
may proceed to Roche-Lobe overflow with an unsynchronised and eccentric orbit. The
likely outcome is merger.

e For a n = 3/2 polytrope, a reasonable description of a red giant or the convective core
of a giant, we find ¢p ~ 5.

We have neglected the spin of M, and assumed circularity. [ | performs an analysis
for arbitrary eccentricity and includes My’s spin, leading to the very similar stability criterion

(1 + 1)

. (7)

The system is Darwin stable <= Jy1, > 3J1 <= a > aparwin =
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