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Figure 1: Diagram showing a point mass M2 with a companion of mass M1 with an exag-
gerated tidal bulge. The axis of the bulge is shown by a dotted line, which, in the case of
co-rotation, would pass through M2.

Consider a circular but unsynchronised orbit of a binary with component masses M1 and
M2 and separation a. We denote the moment of inertia of M1 by I1, assumed to be constant,
the spin angular momentum of M1 by J1, and the spin angular velocity of M1 by Ω1. We
consider the simplifying case of the spin of M2 being small, such that its moment of inertia
may be neglected (I1Ω1 ≫ I2Ω2).

Ignoring winds, the total angular momentum of the binary orbit is therefore

J = I1Ω1 + µa2Ωorb, (1)

where 1/µ = 1/M1 + 1/M2 and µ is the reduced mass.
We consider the scenario shown in Figure 1, where Ω1 < Ωorb, such that the bulge of M1

lags behind M2. Tidal torques act to transfer angular momentum from the orbit into the
spin of M1 by tightening the orbit. This increases Ω1 to match Ωorb. But with a tighter
orbit, Ωorb also increases. A natural question that arises is whether the binary ever reaches
synchronisation:

• If Ω̇1 > Ω̇orb, the spin-up of M1 is faster than the spin-up of the shrinking orbit. The
system approaches synchronisation, Ωorb − Ω1 → 0+.

• If Ω̇1 < Ω̇orb, the shrinking orbit causes the orbit to spin up too quickly for M1 to
catch up, and Ωorb−Ω1 increases catastrophically. This implies the separation shrinks
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catastrophically (on a dynamical time), ending with a merger. This is called the Darwin
instability.

Claim 1. With this setup, we have J1
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= 1

3
Jorb

Ω̇orb

Ωorb
.

Proof. By conservation of total angular momentum J ,

0 = J̇ = I1Ω̇1︸︷︷︸
=J1
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+2µaȧΩorb + µa2Ω̇orb︸ ︷︷ ︸
Jorb
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. (2)

In the second term, rewrite ȧ in terms of Ω̇orb by noting that Ω̇orb/Ωorb = −(3/2)(ȧ/a). We
then obtain the required expression by collecting like terms.

A Corollary of the Claim is that requiring Ω̇1 > Ω̇orb for stability gives the stability
criterion on the angular momenta:

The system is Darwin stable ⇐⇒ Jorb > 3J1, (3)

i.e. A synchronised orbit is achieved as long as M1 has sufficiently small spin (less than a
third of the orbit). The stability criterion may also be recast as a condition on the separation:

The system is Darwin stable ⇐⇒ a > aDarwin =

√
3I1
µ

. (4)

Application to Binary Orbits
A binary that starts off satisfying Equation 4 may eventually shrink below aDarwin due the
evolution of M1. Because I1 ∼ M1R

2
1, the radial expansion of M1 during its evolution may

cause aDarwin to grow and supersede a, leading to the Darwin instability. However, if M1

fills its Roche lobe before this occurs, then the Darwin instability never becomes relevant.
Therefore, a binary never becomes Darwin unstable if its separation exceeds the maximally-
realisable aDarwin, which is aDarwin evaluated at the moment M1 fills its Roche lobe, xL(q)a:
a > aDarwin(R1 = xL(q)a), where q = M1/M2 is the mass ratio. Defining I1 = kM1R

2
1, this

becomes

1

3

a2

1 + q
> kxL(q)

2a2. (5)

The separation a2 cancels out, so we find a criterion that is independent of a and only
depends on q and k. We may use the Eggleton (1983a) analytical approximation of the
Roche radius,

xL(q) =
0.49q2/3

0.6q2/3 + ln(1 + q1/3)
. (6)

Solving Equation 5 numerically, we find the following critical mass ratios:
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• For a n = 3 polytrope, which is a reasonable description of a main sequence star,
it may be shown that k = 0.076 (approximately a fifth that for a uniform sphere),
upon which one finds the critical “Darwin” mass ratio qD ≈ 12, above which the
binary encounters the Darwin instability and plunges in on a dynamical time. Tides
do not have enough time to synchronise and circularise the orbit, meaning the binary
may proceed to Roche-Lobe overflow with an unsynchronised and eccentric orbit. The
likely outcome is merger.

• For a n = 3/2 polytrope, a reasonable description of a red giant or the convective core
of a giant, we find qD ≈ 5.

We have neglected the spin of M2 and assumed circularity. Hut [1980] performs an analysis
for arbitrary eccentricity and includesM2’s spin, leading to the very similar stability criterion

The system is Darwin stable ⇐⇒ Jorb > 3J1 ⇐⇒ a > aDarwin =

√
3(I1 + I2)

µ
(7)
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