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1 The Viscosity Problem

The process of accretion requires angular momentum transport. Without angular momentum
transport, a fluid element in a Keplerian accretion disk simply maintains its orbit with fixed
specific angular momentum JK =

√
GMr and therefore fixed radius r. To move inward

towards the central source, angular momentum of the fluid element must either be removed
from the disk by an external torque or redistributed within the disk by an internal torque.
This is equivalent to the inclusion of a source of viscous stress σ in the fluid momentum
equation:

ρ
du

dt
= −∇p+∇ · σ + F, (1)

where d/dt is the convective derivative and F accounts for any other body force such as
gravity. σ is the stress tensor, which differs from the momentum flux tensor by a sign,
σ = −Π. The theory of gas kinetics gives the following expression for σ:

σ = η

(
∇u+ (∇u)T − 2

3
I∇ · u

)
+ ζI∇ · u. (2)

The stress tensor is a linear combination of velocity gradients. The first term is a traceless
part that gives rise to shear viscosity, whose effect is to transport momentum in a direction
orthogonal to the momentum. The proportionality constant η is the dynamic viscosity and is
defined by this equation. The second term contains the trace and gives rise to bulk viscosity,
whose effect is to transport momentum in the direction along it. The proportionality constant
ζ is the bulk viscosity. The values of the viscosities η and ζ depend on microphysics. For
an incompressible fluid, ∇ · u = 0; there is no bulk viscosity and the viscous stress tensor
is symmetric and traceless. If η is also constant, Equation 1 is called the Navier-Stokes
equation.

In an accretion disk, the main inertial flow is in the azimuthal direction and accretion
requires angular momentum transport in the outward radial direction. This therefore requires
a source of shear viscosity. An obvious and natural source choice to consider is molecular
viscosity, where viscous dissipation arises from molecular collisions or friction. We will show,
however, that the effects of molecular viscosity in accretion disks are very small and cannot
match accretion rates inferred from observations.
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1.1 Molecular Viscosity

An elementary kinetic theory calculation gives the kinematic viscosity ν = η/ρ = 1
3
ṽλ̃,

where ρ is the mass density of the fluid, ṽ and λ̃ are the unspecified velocity and length
scales associated with the fluctuations in the fluid that give rise to the momentum transport,
and the factor of 1/3 arises from averaging a particle velocity component over an isotropic
velocity distribution. The kinematic viscosity therefore has scaling ν ∼ ṽλ̃.

The Reynolds number Re is given by the ratio of the inertial terms ∼ |ρ∂u/∂t| to the
viscous terms ∼ |∇ · σ| in the momentum equation (1). The former has scaling

|∇ · σ| ∼ 1

R
η
dvϕ
dr

∼ 1

R
ρṽλ̃

vϕ
R

∼ vϕ
R2

ρṽλ̃, (3)

and the latter has scaling ∣∣∣∣ρ∂u∂t
∣∣∣∣ ∼ ρ

v2ϕ
R
. (4)

Taking the ratio, we obtain

Re ∼ vϕ
ṽ

R

λ̃
(5)

For molecular viscosity, the relevant velocity and length scales are the sound speed ṽ ∼ cs
and the thermal mean free path λ̃ ∼ λmfp, and so

Remol ∼
vϕ
cs

R

λmfp

. (6)

For hydrogen plasma, νmol ∼ csλmfp ∼ 105cm2s−1. Using vϕ =
√

GM/R, M ∼ 10M⊙, and
R ∼ 1010cm for accretion disks around close black hole binaries, Remol ≳ 1014 and so the
accretion flow is almost completely uninfluenced by molecular viscosity. The factor vϕ/cs
is just the disk Mach number, M, and cannot greatly exceed unity (a supersonic disk may
have M ∼ 10− 20). Thus, the largeness of Remol lies in the factor R/λmfp: the length scale
of the accretion flow is so much larger than the scale at which molecular viscosity operates.

On the other hand, we know that turbulence onset occurs at the critical Reynolds numbers
of order 10 − 103, and so we expect an accretion disk flow to be turbulent. Then, the
fluctuations required for momentum transport may be provided by turbulent eddies with
characteristic velocity ṽ and characteristic size λ̃. Then, the Reynolds number associated
with this turbulent viscosity may be small for the largest and fastest turbulent eddies as seen
from (5).

1.2 Angular Transport by Turbulence

We now show that turbulence gives rise to a stress τ = −ρ⟨ũũ⟩, called the Reynolds stress
or turbulent stress, where ũ is the turbulent fluctuation in the flow velocity.
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We start by examining the momentum equation written in conservative form,

∂

∂t
(ρu) = −∇ · (ρuu)−∇ ·T (7)

where τ = pI − σ is the (total) stress tensor, which includes momentum transport due
to both viscosity and pressure. We decompose fluid quantities into a mean value plus a
much smaller fluctuation due to turbulence: u = U + ũ, τ = T + τ̃ . This is called a
Reynolds decomposition. We assume that the mean quantities are constant with time and
the fluctuations have zero ensemble average, ⟨ũ⟩ = 0 and ⟨τ̃ ⟩ = 0, and that the fluid density
ρ is constant. Carrying out the decomposition and subsequently taking the ensemble average,
the equation becomes

0 = −∇ · (UU)− 1

ρ
∇ · (T+ ρ⟨ũũ⟩). (8)

Thus, the correlation of velocity fluctuations gives rise to a stress, −ρ⟨ũũ⟩. In particular,
for i ̸= j in ρ⟨uiuj⟩, this is a source of shear turbulent viscosity.

Finding the source of the (turbulent) viscosity to explain observed accretion rates had
been a central problem in accretion disk astrophysics for decades until the magnetorotational
instability was identified by Balbus & Hawley (1991, 1998) as a possible source of turbulent
viscosity.

2 Magnetorotational Instability (Balbus-Hawley Insta-

bility)

In the absence of a magnetic field, accretion disks satisfy the Rayleigh stability criterion
and so are hydrodynamically stable. A particle executes retrograde epicycles about its mean
circular orbit. MHD instability in an accretion disk is demonstrated by performing linear
stability analysis of the incompressible ideal MHD equations for axisymmetric perturbations:

Continuity equation:
∂ρ

∂t
+∇ · (ρu) = 0 (9)

Momentum equation: ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+

(∇×B)×B

µ0

− ρ∇Ψ (10)

Magnetic induction equation:
∂B

∂t
= ∇× (u×B) (11)

Energy equation:

(
∂

∂t
+ u · ∇u

)
p

ργ
= 0 (12)

Incompressibility: ∇ · u = 0 (13)

The ideal MHD equations neglect magnetic diffusivity (in the induction equation), and
therefore assumes the magnetic Reynolds number is large Rm ≫ 1. The momentum equation
assumes the only source of stress is Maxwell stress, but we include a body force due to the
gravitational potential Ψ of the central source. We have also included incompressibility
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explicitly. In a non-rotating fluid, linear MHD perturbations give rise to shear Alfvén waves
and the fast/slow magnetosonic waves.

We proceed to consider linear perturbations of fluid quantities about their equilibrium
values: ρ = ρ0 + ρ′, p = p0 + p′, B = B0 + B′ = B0ẑ + B′, v = v0 + v′ = rΩ(r)ϕ̂ + v′.
We assume axisymmetry and also assume a constant background magnetic field B0ẑ in the
direction of the disk normal. Without loss of generality, we write the perturbed quantities as
a Fourier mode, e.g. ρ′ = ρ′0e

i(ωt−kzz−krr), and further assume the wavenumber of the vertical
perturbations to be much larger than that of radial perturbations for a thin disk, |kz| ≫ |kr|.
The resulting linearised equations, when solved, lead to the dispersion relation

ω4 − ω2

(
2k2v2A +

dΩ2

d ln r
+ 4Ω2

)
+ k2v2A

(
k2v2A +

dΩ2

d ln r

)
= 0 (14)

where vA = B0/
√
µ0ρ0 is the Alfvén speed. The MRI exists when ω2 < 0, which clearly

requires

k2v2A < − dΩ2

d ln r
. (15)

Again, for most physical disks, RHS > 0 as the angular velocity decreases outwards. Thus,
if we allow k to have arbitrary size, there always exist a small enough wavenumber for which
Inequality 15 is satisfied. Particularly, Keplerian disks are always unstable (with important
caveats discussed later) to perturbations above a certain lengthscale. Noting vA ∝ B0, the
LHS of Inequality 15 informs us increasing the lengthscale of perturbations and decreasing
the background magnetic field have a destabilising effect. The interpretation of this criterion
is that an instability will set in if the magnetic tension, whose effect is to resist compression
or rarefaction of field lines, is not strong enough to counteract the net tidal force (centrifugal
minus gravitational force) acting on it.

When the instability criterion is satisfied, Equation 14 can be maximised to find the
maximum growth rate

|ωmax| =
1

2

∣∣∣∣ dΩ

d ln r

∣∣∣∣. (16)

Remarkably, this is independent of the field strength given it is non-zero. It is therefore
incorrect to neglect even weak magnetic fields in accretion disk flow. For a Keplerian disk,
|ωmax| = 3

4
Ω occurs at kvA =

√
15
4
Ω. So the e-folding time of the instability is of order inverse

angular velocity:

|ωmax|−1 ≈ Ω−1 ≈ 90s

(
R

1010cm

)3/2(
M

M⊙

)−1/2

. (17)

The requirement of a magnetic field for this instability can be understood as follows. In
a non-magnetised fluid, a perturbed fluid element tends to conserve its specific angular
momentum. When a fluid element is displaced radially outward, it has too little specific
angular momentum for its new position, and so relaxes back towards its initial position.
However, in ideal MHD, fluid flow entrains magnetic field lines, which enforce rigid rotation.
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A perturbed fluid element tends to conserve its angular velocity instead. An outwardly-
displace fluid element has too much angular velocity for its new position, and thus too much
angular momentum for its new position, and is driven further outward. The magnetic field
therefore provides a mechanism to couple the perturbed fluid element to the rest of the
unperturbed fluid threaded by the same field line. In fact, the same magnetic torque that
maintains isorotation of the perturbed fluid element must exert an equal and opposite torque
to the inner fluid, which loses angular momentum and sinks closer to the centre.

It is also instructive to think of this from a dynamical perspective, using the Keplerian
disk as an example. A particle on a circular Keplerian orbit is stable due to the balance of
gravity and the centrifugal force. When perturbed, the fluid element conserves its angular
momentum, and so while the gravitational force decreases as ∝ R−2, the centrifugal force
decreases even more, as Ω2R ∝ (J/R)2R ∝ R−3. The net force is therefore directed towards
the original orbit. The particle, due to its inertia, will overshoot. Following the same
argument, it will accelerate towards its original orbit again, undergoing radial epicyclic
oscillations about the circular orbit (this is just an elliptical orbit—the epicyclic frequency
is equal to the orbital frequency of a Keplerian orbit). In a magnetised fluid, however,
flux-freezing forces the displaced particle to conserve its angular velocity instead, and so the
centrifugal force, going as Ω2R ∝ R, actually increases while the gravitational force weakens,
causing runaway.

2.1 Caveats and Limitations

The claim that there always exists a small enough k for Inequality 15 to be satisfied for
positive RHS is not strictly true, since the perturbation lengthscale is obviously limited by
the disk scale height H. So for a thin disk, even if Inequality 15 is satisfied, the disk is stable
if vA/Ω > H. For a thin disk, ΩH ∼ cs, and so the disk is stable if vA > cs.

Another assumption is that for MRI to be applied to accretion disks, matter must be
coupled to the magnetic field, i.e. there must be some degree of ionisation. This is, for
example, not satisfied in protoplanetary disks where there is a very low ionisation fraction.
In fact, the gravitational instability is the main source of viscosity in protoplanetary disks.

The other caveat stems from the assumption of ideal MHD, which neglects magnetic
diffusivity ηB in the induction equation. However, it is possible for magnetic diffusivity
to suppress an instability if they act on a similar lengthscale. Recalling that ηB is the
diffusion coefficient for B, the timescale for magnetic diffusion over a lengthscale 1/k is
τdiffusion ∼ 1/(ηBk

2). On the other hand, the timescale of the MRI was previously shown to
be τgrowth ∼ 1/Ω. So we expect magnetic diffusivity to stabilise the disk against the MRI if
τgrowth ≳ τdiffusion =⇒ ηB ≳ Ω/k2, i.e. the magnetic Reynolds number is not large, Rem ≲ 1.
This makes sense intuitively: large magnetic diffusivity and small perturbations favour the
suppression of the MRI. But even then, the instability is present at large lengthscales. In
fact, linear stability analyses including the effects of resistivity, ambipolar diffusion, and the
Hall effect show the instability to be present for many non-ideal astrophysical plasmas.

Numerical simulations of magnetised accretion disks confirm the presence of the MRI,
which is found to transport angular momentum outward in the disk. The dynamo action of
the accretion disk is also found to regenerate the magnetic field to sustain this instability.
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2.2 Application to the Shakura-Sunyaev Disk Model

Continuing from the discussion of turbulent viscosity, a turbulent disk may be described by
a Reynolds stress −Σ⟨ũrũϕ⟩. We associate this with a shear viscosity ν by

−Σ⟨ũrũϕ⟩ = Σνr
dΩ

dr
. (18)

For a Keplerian disk, this gives ⟨ũrũϕ⟩ ∼ νΩ. Using ν = αcsH in the Shakura-Sunyaev
prescription and H ∼ cs/Ω in a thin disk,

α ∼ ⟨ũrũϕ⟩
c2s

, (19)

which gives the expression for α in disk accretion driven by shear turbulence. Balbus &
Papaloizou (1999) point out that as long as the velocity correlation ⟨ũrũϕ⟩ is positive, the
magnetic turbulence may indeed be treated as an effective viscosity. If it also gives rise to a
constant α, Equation 19 formally closes the Shakura-Sunyaev disk equations and solves the
viscosity problem.
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